Examples of ordinal α for online calculators for Extended Arrows and fast-growing hierarchy with Extended Buchholz Function
HomepageRepresentation of α in the normal form for Extended Buchholz function | Representation of α for online calculator | Some other representation of α |
0 | 0 | |
ψ0(0) | p_{0}(0) | 1 |
ψ0(0)+ψ0(0) | p_{0}(0)+p_{0}(0) | 2 |
ψ0(0)+ψ0(0)+ψ0(0) | p_{0}(0)+p_{0}(0)+p_{0}(0) | 3 |
ψ0(ψ0(0)) | p_{0}(p_{0}(0)) | ω |
ψ0(ψ0(0))+ψ0(0) | p_{0}(p_{0}(0))+p_{0}(0) | ω+1 |
ψ0(ψ0(0))+ψ0(ψ0(0)) | p_{0}(p_{0}(0))+p_{0}(p_{0}(0)) | ω+ω |
ψ0(ψ0(0)+ψ0(0)) | p_{0}(p_{0}(0)+p_{0}(0)) | ω2 |
ψ0(ψ0(ψ0(0))) | p_{0}(p_{0}(p_{0}(0))) | ωω |
ψ0(ψψ0(0)(0)) | p_{0}(p_{p_{0}(0)}(0)) | ε0 |
ψ0(ψψ0(0)(0)+ψψ0(0)(0)) | p_{0}(p_{p_{0}(0)}(0)+p_{p_{0}(0)}(0)) | ε1 |
ψ0(ψψ0(0)(ψψ0(0)(0))) | p_{0}(p_{p_{0}(0)}(p_{p_{0}(0)}(0))) | ζ0 |
ψ0(ψψ0(0)(ψψ0(0)(ψψ0(0)(0)))) | p_{0}(p_{p_{0}(0)}(p_{p_{0}(0)}(p_{p_{0}(0)}(0)))) | Γ0 |
ψ0(ψψ0(0)+ψ0(0)(0)) | p_{0}(p_{p_{0}(0)+p_{0}(0)}(0)) | ψ0(Ω2) |
ψ0(ψψ0(ψ0(0))(0)) | p_{0}(p_{p_{0}(p_{0}(0))}(0)) | ψ0(Ωω) |
ψψ0(ψψ0(0)(0))(0) | p_{p_{0}(p_{p_{0}(0)}(0))}(0) | ψ0(Ωψ0(Ω)) |
ψ0(ψψψ0(0)(0)(0)) | p_{0}(p_{p_{p_{0}(0)}(0)}(0)) | ψ0(ΩΩ) |
ψ0(ψψψψ0(0)(0)(0)(0)) | p_{0}(p_{p_{p_{p_{0}(0)}(0)}(0)}(0)) | ψ0(ΩΩΩ) |