Examples of ordinal α for online calculators for Extended Arrows and fast-growing hierarchy with Extended Buchholz Function

Homepage

Representation of α in the normal form for Extended Buchholz functionRepresentation of α for online calculatorSome other representation of α
00
ψ0(0)p_{0}(0)1
ψ0(0)+ψ0(0)p_{0}(0)+p_{0}(0)2
ψ0(0)+ψ0(0)+ψ0(0)p_{0}(0)+p_{0}(0)+p_{0}(0)3
ψ00(0))p_{0}(p_{0}(0))ω
ψ00(0))+ψ0(0)p_{0}(p_{0}(0))+p_{0}(0)ω+1
ψ00(0))+ψ00(0))p_{0}(p_{0}(0))+p_{0}(p_{0}(0))ω+ω
ψ00(0)+ψ0(0))p_{0}(p_{0}(0)+p_{0}(0))ω2
ψ000(0)))p_{0}(p_{0}(p_{0}(0)))ωω
ψ0ψ0(0)(0))p_{0}(p_{p_{0}(0)}(0))ε0
ψ0ψ0(0)(0)+ψψ0(0)(0))p_{0}(p_{p_{0}(0)}(0)+p_{p_{0}(0)}(0))ε1
ψ0ψ0(0)ψ0(0)(0)))p_{0}(p_{p_{0}(0)}(p_{p_{0}(0)}(0)))ζ0
ψ0ψ0(0)ψ0(0)ψ0(0)(0))))p_{0}(p_{p_{0}(0)}(p_{p_{0}(0)}(p_{p_{0}(0)}(0))))Γ0
ψ0ψ0(0)+ψ0(0)(0))p_{0}(p_{p_{0}(0)+p_{0}(0)}(0))ψ02)
ψ0ψ00(0))(0))p_{0}(p_{p_{0}(p_{0}(0))}(0))ψ0ω)
ψψ0ψ0(0)(0))(0)p_{p_{0}(p_{p_{0}(0)}(0))}(0)ψ0ψ0(Ω))
ψ0ψψ0(0)(0)(0))p_{0}(p_{p_{p_{0}(0)}(0)}(0))ψ0Ω)
ψ0ψψψ0(0)(0)(0)(0))p_{0}(p_{p_{p_{p_{0}(0)}(0)}(0)}(0))ψ0ΩΩ)